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Abstract—This paper details the development of a multi-agent
cognitive system intended to optimize networking performance in
the lunar environment. NASA’s current concept of the future of
lunar communication, LunaNet [1], outlines a complex network
of networks. Challenges such as scalability, interoperability and
reliability must first be addressed to successfully fulfill this
vision. Machine intelligence can greatly reduce the reliance on
human operators and enable efficient operations for tasks such
as scheduling and network management. The application of
machine learning, artificial intelligence, and other automated
decision-making techniques can be used to allow network nodes
to intelligently sense and adapt to changes in the environment
such as link disruptions, new nodes joining the network, and
support for a diverse range of protocols. Cognitive networking
seeks to evolve these technologies into an autonomous system
with improved science data return, reliability, and scalability.
In this paper, we study three main areas a means to further
develop cognitive networking capabilities: networking and flight
software development, analysis of wireless data for modeling
and simulation, and development of algorithms for a multi-agent
system.

Index Terms—Cognitive Networking, Delay Tolerant Network-
ing, Multi-Agent Reinforcement Learning

I. INTRODUCTION

Future plans for the lunar communication architecture detail
a wide variety of missions. Within the time frame of 2018-
2028, over lunar 40 missions are planned among multiple
space agencies, with vehicles including: lunar orbiters, surface
mobile and stationary vehicles, lunar relays, Earth orbiting
relays and Earth ground stations [2]. Space internetworking
will be a key technology to develop, which must be capable of
supporting Earth-to-Moon links, lunar crosslinks, and orbiting
relays that may use RF or optical physical layers. The wide
level of diversity among nodes makes interoperability a chal-
lenge within multiple levels of the network stack. In addition,

the network may be highly dynamic, requiring scalability
and expandability. It is for these reasons that reliance on
human operators and predefined communication schedules will
become increasingly impractical. Cognitive networking seeks
to develop algorithms and protocols that will sense, decide
and act autonomously according to changes in the network.
This paper outlines the development of a cognitive networking
system prototype to address the challenges of the future lunar
network.

The work discussed in this paper is based on a student-led
effort encompassing several key areas of the cognitive system
including: embedded software development, delay tolerant
networking, machine learning/artificial intelligence, network
modeling and simulation. The networking concept builds upon
the framework of delay tolerant networking (DTN). We model
a realistic cognitive networking experiment with a commercial
off-the-shelf (COTS) flight computer similar to hardware that
has been used by previous NASA CubeSat experiments.

The prototype system builds upon the High-Rate Delay
Tolerant Networking (HDTN) software developed by NASA
Glenn Research Center [3],[4],[5]. The HDTN software has
been released under the NASA Open Source Agreement and
is available on GitHub [6]. Previous work has been focused
on the development of store-and-forward, UDP, TCP, STCP
and LTP convergence layers. A simple flow-based scheduler
has been developed, which will be used to implement Contact
Graph Routing (CGR) as well as additional algorithms which
may be used to improve performance of routing and link
selection. Section II of this paper, “Delay Tolerant Networking
Prototype”, discusses a basic implementation of the flight
computer prototype and the DTN scenario.

To further develop upon the concept of link selection and
routing, we analyze several real-world wireless data sets.



Fig. 1. Flight Computer Prototype

In Section III, “Data Exploration and Analysis”, we discuss
metrics that may be used to assess link quality in a machine
learning model, such as Received Signal Strength Indicator
(RSSI). We develop a regression model which can predict link
quality to enable informed routing decisions. We additionally
discuss ways in which this data may be used to improve
simulation capabilities.

Finally, we discuss the development of a multi-agent rein-
forcement learning (MARL) model. A MARL approach can
be used to take into account the interactions of the various
decision-making elements involved in link quality assessment,
data selection, and routing, as well as how decisions of
one node affect another. These interrelated decisions impact
network congestion and remaining buffer/storage capacity in
multiple areas of the network. We discuss multi-agent tech-
niques which may apply to this problem as well as tools such
as Ray and RLlib [7], which may be used for the simulation
of the scenario.

II. DELAY TOLERANT NETWORKING PROTOTYPE

Our prototype hardware is based on the Up Core gateway.
The Up Core board consists of a 4-core Intel Atom x5-
z8350 processor, 4 GB of RAM, and 32 GB Embedded
MultiMediaCard (eMMC) storage. The gateway also provides
1 GbE LAN and WiFi 802.11 b/g/n. The prototype software
is built on Ubuntu 20.04.2 LTS. Fig. 1 shows two of the
gateways, each are 110x84x24 mm (LxWxH) in size. Similar,
although not identical boards from Up have been used in
CubeSat experiments.

The network stack implemented in the prototype system is
shown in Fig. 2. Licklider Transmission Protocol in addition
to Bundle Protocol is featured in the lunar architecture [2]
to support long distance links with reliable transfer. Links
from the moon directly to Earth may require this capability.
Wireless LAN nodes on the surface may function within their
own subnetwork, that will transmit data to a lunar relay or
lunar gateway as shown in Fig.3.

In this scenario, we envision two classes of networks. The
first is a Mobile Ad hoc Network (MANET) on the lunar

Fig. 2. Prototype Network Stack

Fig. 3. Simple Lunar Architecture

surface consisting of both robotic nodes mobile nodes and
stationary nodes. Network disruptions may occur as vehicles
enter lunar craters or move out of range of other nodes.
DTN protocols can be used to mitigate these disruptions and
allow nodes to collect data for an extended period of time
before needing to offload data to a lunar orbiter. This type of
network may benefit from opportunistic styles of routing, in
which a known network topology may be difficult to obtain.
The second type of network consists of the lunar orbiters,
relays and Earth ground stations. The connections in this type
of network are well-defined, with known contact times and
number of participating nodes. This network will also benefit
from the use of Bundle Protocol and Licklider Transmission
Protocol to account for periods of disconnection. However, this
type of network is deterministic and is quite suited to Contact
Graph Routing.

III. DATA EXPLORATION AND ANALYSIS

While the primary goal of this work is to investigate multi-
agent reinforcement learning approaches which learn their
environment in real-time (online learning), these methods
may still require an initial model developed from a data set.
Algorithms such as Deep Q-Learning and Advantage Actor-
Critic both may start with an initial training phase which
will require data. For this reason, this work conducted a
preliminary data exploration phase in search of wireless data
sets that can be used for building basic machine learning
models and initial training data. In previous work [8], we
discussed how link quality predictions could be used as an
input into a deep reinforcement learning agent which could
then decide the quantity of data fragments to send at a given
time. This mechanism can also be used to select an output



link (or outduct) among multiple possible choices. To evaluate
a wide range of available data sets, we considered several
metrics such as Received Signal Strength Indicator (RSSI),
data rate, and contact duration.

Two resources that were used for the data exploration
are the Community Resource for Archiving Wireless Data at
Dartmouth (CRAWDAD) [9] as well as a comprehensive link
quality estimation survey [10]. The survey in [10] notes the
challenge of finding suitable wireless data sets for machine
learning. Many data sets have an insufficient number of
samples, missing data, unlabeled data, or unclear formats.
This is true even for terrestrial wireless networks but is even
more of a challenge for space related networks such as DTNs,
although there are a few DTN related data sets available on
CRAWDAD. This preliminary study was based on terrestrial
data sets due to these limitations, although the basic concepts
and tool chain would apply to a variety of mobile networks.

A. ORBIT Data Set

Our initial data set consists of measurements from the
Rutgers Open-Access Research Testbed for Next-Generation
Wireless Networks (ORBIT) [11]. This data set includes the
received signal strength indicator (RSSI) for each correctly
received frame at the receiver node when various levels of
noise are injected on the ORBIT testbed. The Rutgers ORBIT
testbed data set is particularly of interest since the Cognitive
Communication project at NASA Glenn is building an RF
testbed similar to the ORBIT concept. The ORBIT testbed
data can give insight into metrics and data set formats useful
for machine learning.

The features used in this analysis include the following:
• Received: whether the signal was received or not

(Boolean value)
• Error: indicates if an error has occurred while capturing

the RSSI (Boolean value)
• Noise: amount of noise injected
• t x: x-coordinate of the grid node that was configured as

the transmitter (integer value)
• t y: y-coordinate of the grid node that was configured as

the transmitter (integer value)
• r x: x-coordinate of the receiver node (integer value)
• r y: y-coordinate of the receiver node (integer value)

The preprocessed data set resulted in 1,218,000 data points.
Several regression methods were trained on the ORBIT

data set including: multiple linear regression, ridge regres-
sion (L2-norm), LASSO regression (L1-norm), random forest
regression, Bayesian ridge regression, and finally XGBoost
regression. To assess the performance of the regression mod-
els, the root mean squared error (RMSE) was be used. The
RMSE measures the average magnitude of the error. Since the
errors are squared before they are averaged, the RMSE gives
a relatively high weight to large errors. In order to understand
if large errors are present, the RMSE is particularly useful. A
training, validation, and test split of the original dataset was
created at 75%, 12.5%, and 12.5% respectively. Fig. 4 shows a
comparison of the RMSE results for each regression method.

Fig. 4. Comparison the RMSE results for regression values among the
training, validation, and test sets for the ORBIT data set.

Lastly, the optimal hyperparameters used for XGBoost
regression were found using AWS SageMaker. These hyper-
parameters were used to inform the model created by hand
as well. This approach of both “hand-done” and automated
tuning ultimately yielded the best result.

B. DieselNet Data Set

While the ORBIT data set includes interesting character-
istics such as varying noise levels injected into the system,
the data set is based on stationary nodes that do not truly
emulate a DTN environment. For this reason, we evaluated the
DieselNet data set [12]. DieselNet is a network of 35 buses on
the campus of University of Massachusetts, Amherst, which
traveled planned routes every day throughout a 5-month period
in the Spring 2006 semester. The buses were equipped with
radio transmitters, and the trace set includes data for each
one-way connection when the buses came into close enough
proximity to transfer data. There were approximately 60,000
one-way contacts, each of the following format:

“Bus 3112 at 72.532745 42.393852 on route 1 in contact
with bus 3114 at 72.532745 42.393852 on route 1 at time
418:27 for 45204688 bytes in 184792.0 ms.”

DieselNet approximates a DTN environment well due to
several factors. The link quality in DieselNet can be measured
by throughput, or the amount of data transferred over a con-
nection per unit time. For our lunar scenario, the bus mobility
roughly simulates the movement of vehicles on the lunar
surface. The regularity of bus routes could be envisioned as the
movements of lunar rovers performing periodic maintenance
activities. However, there are also weaknesses with this data
set. Data collection was imperfect: the GPS coordinates were
the same for both buses for each contact, the reported time
duration was negative for a small fraction of the contacts, and
some were missing data fields. After filtering these out, about
50,000 of the initial 60,000 contacts remained. However, many
of these were “repeat” contacts – the same two buses phased
in and out of connection up to roughly ten times. Furthermore,
one-way contacts often failed to translate to two-way contacts:
the unevenness of the histogram in Fig. 5 implies that the
radios on some buses were systematically better at receiving
or sending radio signals than others. Lastly, the documentation
stated that the route information was invalid, so this was
discarded. In addition, the concept of GPS does not directly



Fig. 5. Contact distribution of DieselNet buses

translate to the lunar environment. Fig. 5 shows the contact
distribution of the DieselNet data set.

IV. MULTI-AGENT SYSTEM

Effective CGR implementations have been explored using
a variety of classical and machine learning algorithms with
effective success [13]. However these well-tested approaches
necessarily resolve decisions at the level of the immediate con-
tact and potentially waste processing resources to re-appraise
routing with changes in network state. These approaches
also face realistic issues in accommodating partial access
to and interruption of node and network state information.
Hybrid scenarios as described in Section II may benefit from
occasional opportunistic exploitation of resource availability
[14], [15], [16].

A more comprehensive model of the CGR problem in space
networks captures the context as a multi-agent system. Multi-
agent techniques are especially adept at optimizing decision-
making in complex, distributed environments [17]. For the
CGR problem in particular a multi-agent framework acknowl-
edges node interconnectivity and the progressive evolution of
network state shaped by the interacting decisions of the node-
agents [18].

In this scenario, each contact acts as a semi-independent
collaborating decision-maker in a shared setting to produce
a set of routing decisions that inform the decisions made
by subsequent points of contact [17]. Using a reinforcement
learning approach, the multiple agent nodes linked in the
network are exposed to a series of training scenarios and learn
to select progressively optimized routing schemes in response
to a reward applied to the decisions made every time-step
[19]. The objective is a networked system that makes more
efficient networking decisions by acknowledging the action of
each contact node [20].

Of particular interest for comparison are two chief MARL
algorithms that have been widely explored in multi-agent
learning contexts and have shown considerable promise in

collaborative and distributed multi-agent settings, including
in networking problems [21], [22]: Deep Q-learning and
Advantage Actor-Critic.

In Deep Q-learning [23], a Q-value function is estimated in
each time-step to refine the rational value assigned to each
action available to the agent. Through training, this value
function shapes an optimal process of decision making by each
agent-node that is sensitive to the decisions made by the other
agent nodes [19], [24].

Advantage Actor-Critic (A2C) [25] in contrast uses a cen-
tralized value function to “critique” and subsequently shape
the particular utility assessment with which each individual
node actor makes a decision. Replacing use of the Q-function,
the Advantage function computes a relative value of each
action as informed by the cumulative choices of all node-actors
compared to an average action choice. Since the critic-assessed
advantage function is updated more frequently than that of the
actors, on each time-step the actor value function is purported
to improve more rapidly with critic influence than without
[26],[27].

There are several network-related tasks which a reinforce-
ment learning agent may act upon:

• Routing and Link Selection - As stated above, a key area
of focus has been the selection of an optimal end-to-
end path in a multi-hop network [28]. The link quality
estimates discussed in Section III can be used to select
the most reliable physical connection among multiple
choices (relay versus direct-to-earth or optical versus RF).
A reinforcement learning agent can be used to take both
link quality and network congestion into consideration
and adjust accordingly.

• Data Selection - The criticality of data, remaining time-
to-live, and size of the data when compared to remaining
link capacity can serve as objectives in a multi-objective
optimization [8].

• Parameter Tuning - LTP is a complex protocol with a vari-
ety of parameters. A reinforcement learning agent can be
used to tune these parameters and improve performance.
This is of particular concern if nodes in an opportunistic
network implement neighbor discovery. Nodes can share
initial connection information using beacons, and param-
eters can be further tuned by the agent.

A. Simulation

A concept of the simulation environment is shown in Fig.
6. Our initial prototype focused on routing and link selection,
with the thought that the development of a basic framework
could later be applied to other decisions described above (data
selection and parameter tuning). The frequency at which mes-
sages reach their destinations was used as the objective metric
for a central critic. Other metrics should be explored later
since the current objective may encourage a sort of “message
highway”, where if a message is lucky enough to be on this
highway it will reach its destination almost immediately, but if
a message is unlucky then it may never reach its destination at
all. This was not an issue in the simulated environment since



Fig. 6. Multi-Agent Environment Concept

the connections were sparse enough that no “highway” could
be established. If there is no centralized critic, then each agent
must determine how successful a decision was based on local
information. In this case, it may be best to measure throughput
multiplied by how much closer a message is to its destination.
The two perspectives of a centralized decision-maker versus
a decentralized system will play an important role in further
investigations.

In order to test different concepts and models, a machine
learning framework was necessary to act as the interface
between the custom DTN environment and different machine
learning models. Ray [29] is an open source Python machine
learning library focused on distributed learning. It provides
an API for multi-agent environments as well as a number of
well-known multi-agent models to train with. It also has the
ability to train a number of models on a distributed system,
which can improve training times.

The simulation environment models a node with several
characteristics related to DTN. This model had a collection
of agents, all of which held a queue of packets (a queue
because the order of packets to send is not yet considered
within the simplified environment). These packets only contain
the destination they are trying to reach, other features such
as packet size or time-to-live are future work. At each time
step, a connection matrix is randomly generated that tells each
agent what connections are available to other agents. Currently
each agent will evaluate each link individually, due to the
fact that in the future new agents could enter the network,
creating a dynamic observation space. If each link is evaluated
individually then the observation space is constant, which
is necessary for most machine learning models. The agent
evaluates each link and selects the best, sending its next packet
if the agent is confident enough in the connection. This step
of evaluation is where a machine learning model could be
applied.

A preliminary learning implementation was developed using
PyTorch to create a 3-layer Deep Q-Network. The agent’s
action was to select the best link with a reward based on
−1× (latency). The observations consist of the neighboring
nodes that are available to send data to. The simulation

Fig. 7. Agents Learn to Reduce Latency

consisted of 100 nodes, with 2 rollout workers per node.
Rollout workers in Ray enable parallel exploration of the en-
vironment and multi-policy activation which can lead to faster
convergence and more robust learning. The nodes exchanged
500 bundles over 2000 time steps per episode. Fig. 7 shows
that the agents demonstrate learning within 1000 time steps.
The agents’ reward increases as they make better decisions
and learned to reduce latency by approximately 40%. Single
agent learners maintained 15-20 s delay at 2000 time steps.

V. CONCLUSION

Several areas were developed to envision a multi-agent
system to enable improved network routing for complex
environments such as the future lunar network. These include
the developement of a DTN bundle agent, an exploration of
available wireless data sets that can be used for modeling
link quality as input to the multi-agent reinforcement learning
model (MARL), the MARL agent and associate algorithms
and an environment to train and test the agent. There is a lack
of publicly available space-related data sets and so simulation
alone may be an appropriate approach. However, the concepts
developed with terrestrial data sets may still apply. The basic
MARL agent and environment developed show that there is
potential for improvement over single agent approaches.

Future work will be to integrate the real-world data sets
into the Ray environment and eventually create a MARL
module for the HDTN software. Additional work can be done
to improve the fidelity of the simulation in terms of packet
characteristics or integration with an orbital analysis program
or network simulator.
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